Contraction kernels and combinatorial maps

نویسندگان

  • Luc Brun
  • Walter G. Kropatsch
چکیده

Graph pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids overcome the main limitations of their regular ancestors. The graphs used in the pyramid may be region adjacency graphs, dual graphs or combinatorial maps. Compared to usual graph data structures, combinatorial maps offer an explicit encoding of the orientation of edges around vertices. Each combinatorial map in the pyramid is generated from the one below by a set of edges to be contracted. This contraction process is controlled by kernels that can be combined in many ways. This paper shows that kernels producing a slow reduction rate can be combined to speed up reduction. Conversely, kernels decompose into smaller kernels that generate a more gradual reduction. We also propose one sequential and one parallel algorithm to compute the contracted combinatorial maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rooted Kernels and Labeled Combinatorial Pyramids

An irregular pyramid consists of a stack of successively reduced graphs. Each smaller graph is deduced from the preceding one using contraction or removal kernels. A contraction (resp. removal) kernel defines a forest of the initial (resp. dual ) graph, each tree of this forest being reduced to a single vertex (resp. dual vertex) in the reduced graph. A combinatorial map encodes a planar graph ...

متن کامل

A RESULT ON FIXED POINTS FOR WEAKLY QUASI-CONTRACTION MAPS IN METRIC SPACES

In this paper, we give a new fixed point theorem forWeakly quasi-contraction maps in metric spaces. Our results extend and improve some fixed point and theorems in literature.    

متن کامل

Best Proximity Points Results for Cone Generalized Semi-Cyclic φ-Contraction Maps

In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.

متن کامل

Dual Contraction of Combinatorial Maps

Pattern Recognition and Image Processing Group Institute of Computer Aided Automation Vienna University of Technology Treitlstr. 3/1832 A-1040 Vienna AUSTRIA Phone: +43 (1) 58801-18351 Fax: +43 (1) 5054668 E-mail: [email protected], [email protected] URL: http://www.prip.tuwien.ac.at/ PRIP-TR-54 January 29, 1999 Dual Contraction of Combinatorial Maps Luc Brun and Walter Kropatsch1 Abs...

متن کامل

ADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE

‎In this work‎, ‎we investigate admitting center map on multiplicative metric space‎ ‎and establish some fixed point theorems for such maps‎. ‎We modify the Banach contraction principle and‎ ‎the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some‎ ‎useful theorems‎. ‎Our results on multiplicative metric space improve and modify‎ ‎s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003